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Introduction 
 
DNA microarray experiments require planning. Planning is driven by the 

experimental objectives. Good DNA microarray experiments have clear objectives. 

The objectives are not based on gene-specific mechanistic hypotheses like objectives 

of many other biological experiments, but it is erroneous to conceive of DNA 

microarray investigations as aimless data mining in search of unanticipated patterns 

that will provide answers to unasked questions.  

 

The objectives of many DNA microarray experiments can be characterized as either 

class comparison, class prediction, or class discovery (4). The objective of class 

comparison studies is to identify the genes that are differentially expressed in cells 

from different types of tissue, different kinds of patients, or in cells exposed to 

different experimental conditions. One example of class comparison is comparing 

gene expression in tumor tissue for patients who respond to a given treatment to gene 

expression in patients with the same cancer diagnosis who don’t respond to therapy 

(7). Another example of class comparison is comparing gene expression in kidney 

tissue of mice after 2 hours of ischemia to gene expression in kidney tissue of normal 

mice. The characteristic feature of class comparison studies is that the classes to be 

compared are defined independently of the expression data. The objective is to see 

how the expression profiles differ among the classes. 

 

Class prediction problems are similar to class comparison problems in that the classes 

are defined independently of the expression data. The emphasis in class prediction 
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problems is in developing a multi-gene formula that can be applied to expression 

profiles of samples whose class is unknown, and to predict the class of the new 

samples. Using the example in the previous paragraph, class comparison involves 

identifying the genes that are differentially expressed between patients who respond 

to a specified treatment and those who don’t respond. Developing a formula that can 

be used to predict whether a new patient will respond to that therapy based on the 

gene expression profile of his or her tumor, is class prediction. Class prediction is 

particularly useful in medical problems of therapy selection or diagnostic 

classification or prognostic prediction. 

 

The third type of objective, class discovery, is quite different from class comparison 

or class prediction. In class discovery there is no classification defined independently 

of the expression profiles. The objective is to discover subsets (clusters) of the cases 

revealed by gene expression profiles and to identify the genes that distinguish the 

clusters. For example, Bittner et al. (1) examined expression profiles of patients with 

advanced malignant melanoma. The focus of the study was on attempting to identify 

a new taxonomy of advanced melanoma based on gene expression. No useful clinical 

classification existed. Class prediction also includes studies whose objective is to 

discover classes of genes that are co-regulated.    

 

 

Levels of replication 
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A single dual-label DNA microarray assay provides a comparison of expression 

profiles for two RNA samples. The same is obtained for two Affymetrix GeneChipTM 

assays. With only those two expression profiles, one cannot determine whether the 

expression profiles in the two RNA samples differ by more than experimental 

variability. This is because the magnitude of all of the relevant sources of variability 

cannot be estimated from the data consisting only of those two expression profiles. 

For example, the variability in expression profiles resulting from labeling the sample 

cannot be estimated.  

 

Investigators often ask, “how many replicates do I need.” If you had enough RNA in 

the two specimens to draw aliquots used to independently label and hybridize the 

RNA to many arrays, you could validly determine whether the expression profiles for 

those two RNA samples differed. Unfortunately, that is not usually the biologically 

relevant question. You will probably be thinking of comparing those two RNA 

samples because they were collected from different tissues or from cells under 

different conditions. The biologically relevant question is usually whether the two 

types of tissue differ with regard to expression profile, or to determine the effects on 

gene expression of changing the experimental conditions of the tissue culture. The 

two RNA samples may not be representative of the two tissue types. There may be 

substantial biological variability in gene expression among tissues of the same type 

and so comparing one RNA sample of one tissue type to one RNA sample of the 

other tissue type does not answer the biological question. The same applies to 

determining the effect of experimental manipulations on gene expression for cells 

 4



grown in tissue culture. There will be variability in gene expression if the experiment 

is repeated because of variation in the administration of the experimental 

manipulations and differences in cell growth and harvesting.  

 

For class comparison and class prediction studies, multiple biological samples are 

needed, not replicate arrays of the same RNA samples. It is useful to have a few 

technical replicates of the same RNA sample to ensure that your procedures, reagents 

and equipment are working properly. Technical replicates should show good 

agreement. Technical replicates can also be protection against bad quality 

hybridizations. But technical replicates are not a substitute for biological replicates; 

that is, having enough samples of biologically independent specimens.  For tissue 

culture experiments, biologically independent specimens means specimens obtained 

from independent replications of the entire experiment. 

 

For studies attempting to discover new taxonomies of disease, it is useful to have 

expression profiles from cells in different parts of the biopsy specimen of the same 

patient, as well as having many independent patients represented. This helps you to 

evaluate whether the clusters you may obtain from subsequent analysis of the 

expression data represent a reproducible disease taxonomy.  

 

Pooling of Samples 

Some investigators pool samples in hope that by pooling they can reduce the number of 

microarrays needed. For example, in comparing two tissue types, a pool of one type of 
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tissue could be compared to a pool of the other tissue type. Replicate arrays might be 

performed on each pooled sample. Although the pooled sample approach may be 

applicable for preliminary screening for differentially expressed genes, the approach does 

not provide a valid basis for statistical analysis. If only one array of each pooled sample 

is prepared, then there is no estimate of the variability associated with independently 

labeling and hybridizing the same pool onto different arrays. Even if the pools are 

hybridized to replicate arrays, you cannot evaluate how adequately a pool of that number 

of RNA specimens reflects the population of that tissue type. Unless multiple biologically 

independent pools of each type are arrayed, only the pooled samples themselves can be 

compared, not the populations from which they were derived. Selecting independent 

pools of samples is necessary in studying small model species where individuals must be 

combined in order to obtain enough RNA for assay (5).  

 

 

Pairing Samples for Co-hybridization on Two-Color Microarrays 

With Affymetrix GeneChipsTM , single samples are labeled and hybridized to individual 

arrays. Spotted cDNA arrays, however, generally use a dual-label system in which two 

RNA samples are separately reverse transcribed, labeled, mixed and hybridized together 

to each array. When using dual-label arrays one must decide on a design for pairing and 

labeling samples.  

 

The Reference Design 
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The reference design, uses an aliquot of a common reference RNA as one of the samples 

hybridized to each array. This is done so that the intensity of hybridization to a spot for a 

sample of interest is measured relative to the intensity of hybridization to the same spot 

on the same array for the reference sample. This relative hybridization intensity is 

standardized against variation in size and shape of corresponding spots on different 

arrays. Relative intensity is also standardized with regard to variation in sample 

distribution across each array since the two samples are mixed and therefore distributed 

similarly. The measure of relative hybridization generally used is the logarithm of the 

ratio of intensities of the two labels at the spot. 

 

The reference design is illustrated in Figure 1. Generally, the reference is labeled with the 

same dye on each array. Any gene-specific dye bias not removed by normalization affects 

all arrays similarly and does not bias class comparisons. Using a reference design, any 

subset of samples can be compared to any other subset of samples, hence the design is 

not dependent on the specification of a single mode of classification. The reference 

design is also convenient for class discovery using cluster analysis since the relative 

expression measurements are consistent with regard to the same reference. 

 

The Balanced Block Design 

A disadvantage of the reference design is that half of the hybridizations are used for the 

reference sample, which may be of no real interest.  Balanced block designs (2) are 

alternatives that can be used in simple situations. For example, suppose one wished to 

compare BRCA1 mutated breast tumors to BRCA1 non-mutated breast tumors, that equal 
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numbers of each tumor were available and that no other comparisons or other analyses 

were of interest. One could hybridize on each array one BRCA1 mutated tumor sample 

with one non-mutated sample (Figure 2). On half of the arrays the BRCA1 mutated 

tumors should be labeled with the red dye and on the other half the non-mutated tumors 

should be labeled with the red dye. The analysis of data for the block design is based on 

an analysis of variance model for channel specific background adjusted intensities (3). 

The block design can accommodate n samples of each type using only n microarrays. No 

reference RNA is used at all. The reference design would require 2n arrays to 

accommodate n non-reference samples from each of the two classes. 

 

Although the balanced block design is very efficient in use of arrays, it has some serious 

limitations. For one, cluster analysis of the expression profiles cannot be performed 

effectively. Without a common reference, any comparisons between expression profiles 

of samples on different arrays will be subject to noise resulting from variation in size and 

shape of corresponding spots on different arrays and variation in sample distribution 

patterns on individual arrays (2). Also, since it is difficult or impossible to pair the 

samples simultaneously with regard to all of the class comparisons of interest, the block 

design is most effective when there is a single type of class comparison. The block design 

is also less effective than the reference design when there is large inter-sample variability 

and when the number of samples, rather than the number of arrays, is limiting (2). 

 

The Loop Design 
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Loop designs (6) are another alternative to reference designs. When cluster analysis is 

planned, two aliquots of each sample must be arrayed for the loop design (Figure 3). The 

arrays link the samples together in a loop pattern. This design uses n arrays to study n 

samples, using two aliquots of each sample. The loop permits all pairs of samples to be 

contrasted in a manner that controls for variation in spot size and sample distribution 

patterns using a statistical model. Contrasting two samples far apart in the loop, however, 

involves modeling many indirect effects corresponding to the arrays linking the two 

samples of interest and this adds substantial variance to many of these contrasts (2). 

Consequently loop designs are very inferior to reference designs for cluster analysis. 

Loop designs can be used for class comparisons, but are less efficient than block designs. 

Loop designs are also less robust against the presence of bad quality arrays; two bad 

arrays can break the loop apart.   

 

Reverse Labeling 

Some investigators believe that all arrays should be performed both forward and reverse 

labeled. In general, this is unnecessary (3). 

 

The relative labeling intensity of the Cy3 and Cy5 may be different for different genes. 

Although the normalization process may remove average dye bias, gene-specific dye bias 

may remain. This is not important for comparing classes of non-reference samples using 

a reference design when the reference is consistently assigned the same label. Suppose, 

however, that for a group of patients we wanted to compare tumor tissue to matched 

normal tissue from the same individual using dual-label microarrays. One effective 

 9



design would be to pair tumor and normal tissues from the same patient for co-

hybridization on the same array using the balanced block design (Figure 2). In half of 

these arrays the tumor should be labeled with Cy3 and in the other half of the arrays the 

tumor should be labeled with Cy5. It is not necessary to perform any reverse labeled 

replicate arrays of the tissues from the same patient (3). Gene-specific dye bias can be 

estimated in the balanced block design and used to adjust class comparisons without any 

reverse labeling arrays for the same two specimens. For a fixed total number of arrays, it 

is best to use the available arrays to assay tissue from new patients, using the balanced 

block design described, rather than to perform replicate reverse labeled arrays for single 

patients. The balanced block design is also best when there are n tumor tissues and n 

normal tissues even though the tissues are not from the same patients, or for comparing 

any two classes of samples. In these cases, the samples may be randomly paired, or 

paired based on balance with regard to potentially confounding variables such as the age 

of the specimens.  

 

In some cases a reference design is used in which the primary objective is comparison of 

classes of the non-reference samples but comparison to the internal reference is a 

secondary objective. For example, there may be several types of transgenic mouse breast 

tumors for comparison and the internal reference may be a pool of normal mouse breast 

epithelium. Because the primary interest is comparison among multiple tumor models or 

clustering the expression profiles of the tumors, a reference design may be chosen. Use of 

a pool of normal breast epithelium as the internal reference, rather than a mixture of cell 

lines, reflects some interest in comparison of expression profiles in tumor relative to 
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normal breast epithelium. Comparison to a single pool of normal breast epithelium is 

somewhat problematic, however, for reasons described previously in the section on 

pooling. Nevertheless, the comparison may be of interest.  

 

In order ensure that the comparison of tumor expression to that of the reference is not 

distorted by gene-specific dye bias when using a reference design, some reverse labeled 

arrays are needed. One can then fit a statistical analysis of variance model to the 

logarithms of the intensities for each channel as described by Dobbin et al. (3). A 

separate analysis of variance model is fit for each gene and from the model one estimates 

the residual dye bias after normalization. These estimates are used by the model to 

automatically adjust the comparison of gene expression in tumor versus reference. Not all 

arrays need to be reverse labeled; 5-10 reverse labeled pairs of arrays will generally be 

adequate. Except for this purpose of comparison to the reference using a reference 

design, however, we recommend against reverse labeling of the same two RNA samples 

forward labeled on another array.  

 

Recommendations for dual-label designs 

When experimental objectives include discovery of new classes among the samples, then 

we recommend the reference design. If only comparison of pre-defined classes are 

planned but there are several kinds of comparisons to be made, then we again recommend 

the reference design. If only a single kind of class comparison is of interest and the 

expense of the microarrays is an important issue, then the balanced block design is 

recommended. If there is interest in measuring expression for each diseased specimen 
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relative to a paired normal specimen from the same individual, then the balanced block 

design is again recommended. We do not recommend use of the loop design in most 

circumstances. 

 

If a common reference design is used, the reference RNA need not represent a 

biologically relevant contrast to the experimental samples. The main purpose of the 

reference RNA is to enable relative expression measures to be calculated in order to 

avoid technical measures of variation. Many investigators use reference RNA from a 

mixture of cell lines so that most genes will be expressed at a level that permits both 

increased and decreased expression in the experimental specimens to be measured. Using 

the same reference RNA for all experiments of a laboratory makes it possible to compare 

expression among different experiments, although other sources of variation may make 

this difficult.  

 

In cases where the common reference represents a pool of RNA from a source for which 

comparison is of interest, we recommend that the reference design (e.g. with the common 

reference consistently labeled with say Cy3) be supplemented by some arrays (e.g. 5-10) 

which represent dye swaps of the main set of arrays.  

 

  

 

 

Number of Biologically Independent Samples Needed 
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The number of independent biological samples needed depends on the objectives of the 

experiment. We will describe here a relatively straightforward method for planning 

sample size for testing whether a particular gene is differentially expressed between two 

pre-defined classes. Such a test can be applied to each gene if we adjust for the number of 

comparisons involved (8).  

 

This approach to sample size planning may be used for dual-channel arrays using 

reference designs or for single label oligonucleotide arrays. For dual-channel arrays the 

expression level for a gene is the log ratio of intensity relative to the reference sample; for 

Affymetrix GeneChipTM arrays it is usually the log signal. The approach to sample size 

planning described here is based on the assumption that the gene-specific expression 

measurements are approximately normally distributed among samples of the same class. 

Let σ denote the standard deviation of the log expression level among samples within the 

same class and suppose that the means of the log expression in the two classes differ by δ 

for a particular gene. For example with base 2 logarithms, a value of δ=1 corresponds to a 

2-fold difference between classes. We assume that the two classes will be compared with 

regard to level of expression of each gene and that a statistically significant difference 

will be declared if the null hypothesis can be rejected at a significance level α. The 

significance level is the probability of concluding that the gene is differentially expressed 

between the two classes when in fact the means are the same (δ=0). The significance 

level α will be set stringently in order to limit the number of false positive findings since 

thousands of genes will be analyzed. The desired statistical power will be denoted 1-β.  

 13



Statistical power is the probability of obtaining statistical significance in comparing gene 

expression among the two classes when the true difference in mean expression levels 

between the classes is δ. Statistical power is one minus the false negative rate (β).  

 

Under these conditions, the number of total samples required from different individuals 

or different replications of the experiment is approximately   

 

                        n = 4(zα/2 + zβ)2 / (δ/σ)2                     (1) 

where zα/2 and zβ denote the corresponding percentiles of the standard normal distribution 

(8). A standard normal distribution has mean zero and standard deviation one. The total 

area under the standard normal distribution (between the curve and the x-axis) is one. The 

area under the part of the curve to the left of the x-axis value of zα/2  is α/2. The area to 

the left of the x-axis value of zβ  is β. The n in formula (1) is the total number of 

experimental samples and also the number of arrays needed.  If the ratio of sample sizes 

in the two groups is k:1 instead of 1:1, then the total sample size increases by a factor of 

(k+1)2/4k compared to formula (1).  

 

The fact that expression levels for many genes will be examined indicates that the size of 

α should be smaller than for experiments where the focus is on a single endpoint.  We 

recommend planning the sample size using α=0.001 and β=0.05. In our experience, most 

genes are not differentially expressed. Using α=0.001 results in 10 false discoveries per 

10,000 non-differentially expressed genes. This is less conservative than the multiple 

comparison adjustments commonly used for clinical trials, but seems reasonable for 
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microarray studies where findings may be followed up in other kinds of assays. Using 

α=0.005, however, results in 50 false discoveries per 10,000 non-differentially expressed 

genes, which is too large a number of false leads even for most microarray studies.  For 

α=0.001 and β=0.05, the standard normal percentiles are zα/2  =-3.29 and  zβ  =-1.645. 

 

The parameter σ can usually be estimated based on data showing the degree of variation 

of expression values among similar biological tissue samples. For log-ratio expression 

levels in dual-label arrays using the reference design, we have seen the median value of σ 

of approximately 0.5 (using base 2 logarithms) for human tissue samples. The parameter 

δ represents the size of difference between the two classes we wish to be able to detect. 

For log2 ratios, δ=1 is often considered reasonable as it corresponds to a 2-fold difference 

in expression level between classes. Using α=0.001, β=0.05, δ=1 and σ=0.50 in the 

above formula gives a required sample size of approximately 25 total samples.  

 

The within class variability depends on the type of specimens; human tissue samples 

have greater variability than inbred strains of mice or cell lines. In experiments studying 

microarrays of kidney tissue for inbred strains of mice, the median standard deviation of 

log ratios for normal kidney was approximately 0.25, with little variation among genes. 

Using α=0.001, β=0.05, δ=1 and σ=0.25 in the above formula gives a required sample 

size of approximately 7 total samples. With such small sample sizes, formula (1) based 

on approximate normality would be more accurate if based on the t distribution, rather 

than the normal distribution. The constants in expression (1) corresponding to standard 

normal percentiles should be replaced by percentiles of the t distribution with mean zero, 
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and n-2 degrees of freedom, where n is the total number of samples. Since expression (1) 

determines n, the expression must be solved iteratively for n. In the case of  α=0.001, 

β=0.05, δ=1 and σ=0.25, we find that a total of 12 samples, 6 from each of the two 

classes being compared, are required for comparing the two classes. If this were a time 

series experiment with more than two time points, then one should plan for 6 animals per 

time point in order to enable expression profiles to be compared for all pairs of time 

points.  

 

When dual-label arrays are used with the balanced block design to compare either 

naturally paired or independent samples from two classes, a similar formulas applies:  

 

                        n = 2(zα/2 + zβ)2 / (δ/τ)2   (2) 

 

 n is the total number of independent experimental samples needed, as in expression (1) 

for the reference design, but only n/2 arrays are needed. For the balanced block design τ 

represents the standard deviation of variation across arrays in the log ratio of expression 

levels of samples, one from each class being compared (3). Preliminary data is generally 

needed to estimate τ in this case. In several cases that we have examined, τ2 was 

approximately equal to 2 σ2 and hence the total number of required non-reference 

samples was approximately the same for the reference design as for the balanced block 

design. The balanced block design required half as many arrays, however.  
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Adequate methods for determining the number of samples required for gene expression 

studies whose objectives are class prediction or class discovery have not yet been 

developed. For such objectives the reference design is strongly recommended. The 

sample size formula (1) provides reasonable minimum sample sizes for class prediction 

studies. Often, however, developing multivariate class predictors or survival predictors 

involves extensive analyses beyond determining the genes that are informative 

individually. Also, a substantial portion of the cases may be set aside as a validation set 

for estimating the misclassification rate of the model developed on the test set of data. 

Consequently, larger sample sizes are generally needed for class prediction studies (7,9). 
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